Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36985414

RESUMO

Although heterogeneous photocatalysis has shown promising results in degradation of contaminants of emerging concern (CECs), the mechanistic implications related to structural diversity of chemicals, affecting oxidative (by HO•) or reductive (by O2•-) degradation pathways are still scarce. In this study, the degradation extents and rates of selected organics in the absence and presence of common scavengers for reactive oxygen species (ROS) generated during photocatalytic treatment were determined. The obtained values were then brought into correlation as K coefficients (MHO•/MO2•-), denoting the ratio of organics degraded by two occurring mechanisms: oxidation and reduction via HO• and O2•-. The compounds possessing K >> 1 favor oxidative degradation over HO•, and vice versa for reductive degradation (i.e., if K << 1 compounds undergo reductive reactions driven by O2•-). Such empirical values were brought into correlation with structural features of CECs, represented by molecular descriptors, employing a quantitative structure activity/property relationship (QSA/PR) modeling. The functional stability and predictive power of the resulting QSA/PR model was confirmed by internal and external cross-validation. The most influential descriptors were found to be the size of the molecule and presence/absence of particular molecular fragments such as C - O and C - Cl bonds; the latter favors HO•-driven reaction, while the former the reductive pathway. The developed QSA/PR models can be considered robust predictive tools for evaluating distribution between degradation mechanisms occurring in photocatalytic treatment.

2.
Molecules ; 28(4)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36838964

RESUMO

Dipeptidyl peptidase III (DPP III), a zinc exopeptidase, is involved in the final steps of intercellular protein degradation and has a marked affinity for opioid peptides such as enkephalins and endomorphins. Recently, we characterized a number of neuropeptides as potential substrates and inhibitors of human DPP III and provided an explanation for their differential behavior. These studies prompted us to investigate the influence of the conserved R399 and R669 on neuropeptides binding to DPP III. Measuring kinetic parameters in inhibitory assays, we found that mutation of R669 to Ala or Met significantly reduced the inhibitory properties of the slow substrates tynorphin and valorphin, whereas the effects on binding of the good substrates Arg2-2NA and Leu-enkephalin were small. Molecular dynamics simulations of wild-type (WT) and mutant DPP III complexes with Leu-enkephalin, tynorphin, valorphin, and Arg2-2NA in conjunction with calculations of binding free energies revealed that the lower inhibitory potency of slow substrates in the R669A mutant can be explained by the lower binding affinity of tynorphin and the higher propensity of valorphin to hydrolyze in the mutant than in WT. The R399A mutation was shown to affect the binding and/or hydrolysis of both good and slow substrates, with the effects on Leu-enkephalin being the most pronounced.


Assuntos
Encefalina Leucina , Encefalinas , Humanos , Domínio Catalítico , Mutação
3.
Int J Biol Macromol ; 220: 1390-1401, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36116590

RESUMO

Dipeptidyl peptidase III (DPP III) is a cytosolic, two-domain zinc-exopeptidase. It is widely distributed in mammalian tissues, where it's involved in the final steps of normal intracellular protein degradation. However, its pronounced affinity for some bioactive peptides (angiotensins, enkephalins, and endomorphins) suggests more specific functions such as blood pressure regulation and involvement in pain regulation. We have investigated several different neuropeptides as potential substrates and inhibitors of human DPP III. The binding affinities and kinetic data determined by isothermal titration calorimetry, in combination with measurements of enzyme inhibition identified the hemorphin-related valorphin, tynorphin, S-tynorphin, and I-tynorphin as the most potent inhibitors of DPP III (actually slow substrates), whereas hemorphin-4 proved to be the best substrate of all neuropeptides examined. In addition, we have shown that the neuropeptides valorphin, Leu-valorphin-Arg, and the opioid peptide ß-casomorphin, are DPP III substrates. The molecular modelling of selected peptides shows uniform binding to the lower domain ß-strand residues of DPP III via peptide backbone atoms, but also previously unrecognized stabilizing interactions with conserved residues of the metal-binding site and catalytic machinery in the upper domain. The computational data helped explain the differences between substrates that are hydrolyzed effectively and those hydrolysed slowly by DPP III.


Assuntos
Dipeptidil Peptidases e Tripeptidil Peptidases , Zinco , Adamantano/análogos & derivados , Angiotensinas , Encefalinas , Humanos , Peptídeos Opioides , Zinco/metabolismo
4.
Environ Sci Pollut Res Int ; 29(58): 87628-87644, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35819674

RESUMO

The study of the structural features affecting the adsorption of organics, especially contaminants of emerging concern (CECs), onto TiO2 P25 in aqueous medium has far-reaching implications for the understanding and modification of TiO2 P25 in the roles such as an adsorbent and photocatalyst. The effect of pH and γ(TiO2 P25) as variables on the extent of removal of organics by adsorption on TiO2 P25 was investigated by response surface methodology (RSM) and quantitative structure-property relationship (QSPR) modeling. Experimentally determined coefficients of adsorption were used as responses in RSM, yielding a quadratic polynomial equation (QPE) for each of the studied organics. Furthermore, coefficients (A, B, C, D, E, and F) obtained from QPEs were used as responses in QSPR modeling to establish their dependence on the structural features of the studied organics. The functional stability and predictive power of the resulting QSPR models were confirmed with internal and external cross validation. The influence of structural features of organics on the adsorption process is explained by molecular descriptors included in the derived QSPR models. The most influential descriptors on the adsorption of organics on TiO2 P25 are found to be those correlated with ionization potential, molecular mass, and volume, then molecular fragments (e.g., -CH =) and particular topological features such as C and N atoms, or two heteroatoms (e.g., N and N or O and Cl) at certain distance. Derived QSPR models can be considered as robust predictive tools for evaluating efficiency of adsorption processes onto TiO2 P25, providing insights into influential structural features facilitating adsorption process.


Assuntos
Titânio , Água , Adsorção , Titânio/química , Relação Quantitativa Estrutura-Atividade
5.
Int J Mol Sci ; 23(3)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35163780

RESUMO

Dipeptidyl peptides III (DPP III) is a dual-domain zinc exopeptidase that hydrolyzes peptides of varying sequence and size. Despite attempts to elucidate and narrow down the broad substrate-specificity of DPP III, there is no explanation as to why some of them, such as tynorphin (VVYPW), the truncated form of the endogenous heptapeptide spinorphin, are the slow-reacting substrates of DPP III compared to others, such as Leu-enkephalin. Using quantum molecular mechanics calculations followed by various molecular dynamics techniques, we describe for the first time the entire catalytic cycle of human DPP III, providing theoretical insight into the inhibitory mechanism of tynorphin. The chemical step of peptide bond hydrolysis and the substrate binding to the active site of the enzyme and release of the product were described for DPP III in complex with tynorphin and Leu-enkephalin and their products. We found that tynorphin is cleaved by the same reaction mechanism determined for Leu-enkephalin. More importantly, we showed that the product stabilization and regeneration of the enzyme, but not the nucleophilic attack of the catalytic water molecule and inversion at the nitrogen atom of the cleavable peptide bond, correspond to the rate-determining steps of the overall catalytic cycle of the enzyme.


Assuntos
Dipeptidil Peptidases e Tripeptidil Peptidases/química , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Encefalina Leucina/química , Oligopeptídeos/química , Domínio Catalítico , Encefalina Leucina/farmacologia , Humanos , Hidrólise , Modelos Moleculares , Conformação Molecular , Simulação de Dinâmica Molecular , Oligopeptídeos/farmacologia , Domínios Proteicos , Teoria Quântica
6.
Phys Chem Chem Phys ; 23(23): 13267-13275, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34095907

RESUMO

Dipeptidyl peptidase III (DPP III), a zinc-dependent exopeptidase, is widely distributed in organisms and present in almost all human tissues. In addition to its involvement in protein catabolism, it plays a role in oxidative stress and blood pressure regulation, and there is evidence of its involvement in pain modulation. Excess zinc ions have been found to inhibit its hydrolytic activity, but the binding affinity, binding site geometry, and mechanism of inhibitory activity have been unknown. Using several different computational approaches, we determined the inhibitory zinc ion binding site, its coordination and relative binding affinity. During some simulations the translocation of the zinc ion from the inhibitory to the catalytic binding site was observed, accompanied by movement of the catalytic zinc ion toward the exit of the substrate binding site. The traced behavior suggests an associative type of metal ion exchange, in which the formation of the ternary complex between enzyme and two metal ions precedes the exit of the catalytic metal ion. Differently from our previous findings that binding of a peptide induces partial opening of hDPP III, the globularity of the protein did not change in MD simulations of the hermorphin-like peptide bound to hDPP III with two zinc ions. However, the entrance to the interdomain cleft widens during Zn diffusion into the protein and was found to be the highest energy barrier in the process of metal translocation from the solvent to the active site. Finally, we discuss why excess zinc reduces enzyme activity.


Assuntos
Dipeptidil Peptidases e Tripeptidil Peptidases/antagonistas & inibidores , Inibidores de Proteases/farmacologia , Zinco/farmacologia , Sítios de Ligação/efeitos dos fármacos , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Humanos , Íons/química , Íons/farmacologia , Simulação de Dinâmica Molecular , Inibidores de Proteases/química , Zinco/química
7.
Materials (Basel) ; 13(7)2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32244708

RESUMO

Sulfur-doped TiO2 (S-TiO2) composites with reduced graphene oxide (rGO), wt. % of rGO equal to 0.5%, 2.75%, and 5.0%, were prepared by a one-pot solvothermal procedure. The aim was to improve photocatalytic performance in comparison to TiO2 under simulated solar irradiation for the treatment of diclofenac (DCF) in aqueous medium. The obtained composites were characterized for physical-chemical properties using thermogravimetric analysis (TGA), X-ray diffractograms (XRD), Raman, scanning electron microscopy (SEM)/energy dispersive X-ray (EDX), Brauner Emmett Teller (BET), and photoluminescence (PL) analyses, indicating successful sulfur doping and inclusion of rGO. Sulfur doping and rGO have successfully led to a decrease in photogenerated charge recombination. However, both antagonistic and synergistic effects toward DCF treatment were observed, with the latter being brought forward by higher wt.% rGO. The composite with 5.0 wt.% rGO has shown the highest DCF conversion at pH 4 compared to that obtained by pristine TiO2, despite lower DCF adsorption during the initial dark period. The expected positive effects of both sulfur doping and rGO on charge recombination were found to be limited because of the subpar interphase contact with the composite and incomplete reduction of the GO precursor. Consequent unfavorable interactions between rGO and DCF negatively influenced the activity of the studied S-TiO2/rGO photocatalyst under simulated solar irradiation.

8.
J Chem Inf Model ; 59(8): 3437-3453, 2019 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-31274304

RESUMO

The main aim of this work was to find parameters for the zinc ion in human dipeptidyl peptidase III (DPP III) active site that would enable its reliable modeling. Since the parameters publicly available failed to reproduce the zinc ion coordination in the enzyme, we developed a new set of the hybrid bonded/nonbonded parameters for the zinc ion suitable for molecular modeling of the human DPP III, dynamics, and ligand binding. The parameters allowed exchange of the water molecules coordinating the zinc ion and proved to be robust enough to enable reliable modeling not only of human DPP III and its orthologues but also of the other zinc-dependent peptidases with the zinc ion coordination similar to that in dipeptidyl peptidases III, i.e., peptidases with the zinc ion coordinated with two histidines and one glutamate. The new parameters were tested on a set of 21 different systems comprising 8 different peptidases, 5 DPP III orthologues, thermolysin, neprilysin, and aminopeptidase N, and the results are summarized in the second part of the article.


Assuntos
Dipeptidil Peptidases e Tripeptidil Peptidases/química , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Zinco/metabolismo , Humanos , Imidazóis/química , Conformação Proteica , Prótons
9.
J Biomol Struct Dyn ; 37(14): 3596-3606, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30198396

RESUMO

Human dipeptidyl peptidase III (hDPP III) is a zinc-exopeptidase of the family M49 involved in final steps of intracellular protein degradation and in cytoprotective pathway Keap1-Nrf2. Biochemical and structural properties of this enzyme have been extensively investigated, but the knowledge on its contacts with other proteins is scarce. Previously, polypeptide aprotinin was shown to be a competitive inhibitor of hDPP III hydrolytic activity. In this study, aprotinin was first investigated as a potential substrate of hDPP III, but no degradation products were demonstrated by MALDI-TOF mass spectrometry. Subsequently, molecular details of the protein-protein interaction between aprotinin and hDPP III were studied by molecular modeling. Docking and long molecular dynamics (MD) simulations have shown that aprotinin interacts by its canonical binding epitope with the substrate binding cleft of hDPP III. Thereby, free N-terminus of aprotinin is distant from the active-site zinc. Enzyme-inhibitor complex is stabilized by intermolecular hydrogen bonding network, electrostatic and hydrophobic interactions which mostly involve constituent amino acid residues of the hDPP III substrate binding subsites S1, S1', S2, S2' and S3'. This is the first study that gives insight into aprotinin binding to a metallopeptidase. Communicated by Ramaswamy H. Sarma.


Assuntos
Aprotinina/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Aminoácidos/química , Sítios de Ligação , Dipeptidil Peptidases e Tripeptidil Peptidases/química , Humanos , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteólise , Solventes , Eletricidade Estática , Especificidade por Substrato , Zinco/metabolismo
10.
PLoS One ; 13(2): e0192488, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29420664

RESUMO

Dipeptidyl peptidase III (DPP III) isolated from the thermophilic bacteria Caldithrix abyssi (Ca) is a two-domain zinc exopeptidase, a member of the M49 family. Like other DPPs III, it cleaves dipeptides from the N-terminus of its substrates but differently from human, yeast and Bacteroides thetaiotaomicron (mesophile) orthologs, it has the pentapeptide zinc binding motif (HEISH) in the active site instead of the hexapeptide (HEXXGH). The aim of our study was to investigate structure, dynamics and activity of CaDPP III, as well as to find possible differences with already characterized DPPs III from mesophiles, especially B. thetaiotaomicron. The enzyme structure was determined by X-ray diffraction, while stability and flexibility were investigated using MD simulations. Using molecular modeling approach we determined the way of ligands binding into the enzyme active site and identified the possible reasons for the decreased substrate specificity compared to other DPPs III. The obtained results gave us possible explanation for higher stability, as well as higher temperature optimum of CaDPP III. The structural features explaining its altered substrate specificity are also given. The possible structural and catalytic significance of the HEISH motive, unique to CaDPP III, was studied computationally, comparing the results of long MD simulations of the wild type enzyme with those obtained for the HEISGH mutant. This study presents the first structural and biochemical characterization of DPP III from a thermophile.


Assuntos
Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Cristalografia por Raios X , Dipeptidil Peptidases e Tripeptidil Peptidases/química , Estabilidade Enzimática , Simulação de Dinâmica Molecular , Conformação Proteica , Especificidade por Substrato , Temperatura
11.
RSC Adv ; 8(24): 13310-13322, 2018 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35542530

RESUMO

The hydrogen deuterium exchange (HDX) mass spectrometry combined with molecular dynamics (MD) simulations was employed to investigate conformational dynamics and ligand binding within the M49 family (dipeptidyl peptidase III family). Six dipeptidyl peptidase III (DPP III) orthologues, human, yeast, three bacterial and one plant (moss) were studied. According to the results, all orthologues seem to be quite compact wherein DPP III from the thermophile Caldithrix abyssi seems to be the most compact. The protected regions are located within the two domains core and the overall flexibility profile consistent with semi-closed conformation as the dominant protein form in solution. Besides conservation of conformational dynamics within the M49 family, we also investigated the ligand, pentapeptide tynorphin, binding. By comparing HDX data obtained for unliganded protein with those obtained for its complex with tynorphin it was found that the ligand binding mode is conserved within the family. Tynorphin binds within inter-domain cleft, close to the lower domain ß-core and induces its stabilization in all orthologues. Docking combined with MD simulations revealed details of the protein flexibility as well as of the enzyme-ligand interactions.

12.
Dalton Trans ; 43(41): 15503-14, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25192149

RESUMO

Multiple choices of the protein active conformations in flexible metalloenzymes complicate study of their catalytic mechanism. We used three different conformations of human dipeptidyl-peptidase III (DPP III) to investigate the influence of the protein environment on ligand binding and the Zn(2+) coordination. MD simulations followed by calculations of binding free energy components accomplished for a series of DPP III substrates, both synthetic and natural, revealed that binding of the ß-strand shaped substrate to the five-stranded ß-core of the compact DPP III form (in antiparallel fashion) is the preferred binding mode, in agreement with the experimentally determined structure of the DPP III inactive mutant-tynorphin complex (Bezerra et al., Proc. Natl. Acad. Sci. U. S. A., 2012, 109, 6525). Previously it was proposed that the catalytic mechanism of DPP III is similar to that of thermolysin, which assumes exchange of five and four coordinated Zn(2+), and activation of Zn-bound water by a nearby Glu. Our QM/MM calculations, performed for a total of 18 protein structures with different zinc ion environments, revealed that the 5-coordinated metal ion is more favourable than the 6-coordinated one in only the most compact DPP III form. Besides, in this structure E451 is H-bonded to the metal ion coordinating water. Also, our study revealed two constraints for the broad substrate specificity of DPP III. One is the possibility of the substrate adopting the ß-strand shape and the other is its charged N-terminus. Altogether, we assume that the human DPP III active conformation would be the most compact form, similar to the "closed X-ray" DPP III structure.


Assuntos
Dipeptidil Peptidases e Tripeptidil Peptidases/química , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Zinco/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Teoria Quântica , Especificidade por Substrato , Termodinâmica
13.
J Chem Inf Model ; 52(6): 1583-94, 2012 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-22656863

RESUMO

Human dipeptidyl peptidase III (DPP III) is a two domain metallo-peptidase from the M49 family. The wide interdomain cleft and broad substrate specificity suggest that this enzyme could experience significant conformational change. Long (>100 ns) molecular dynamics (MD) simulations of DPP III revealed large range conformational changes of the protein, suggesting the pre-existing equilibrium model for a substrate binding. The binding free energy calculations revealed tighter binding of the preferred synthetic substrate Arg-Arg-2-naphtylamide to the "closed" than to the "open" DPP III conformation. Our assumption that Asp372 plays a crucial role in the large scale interdomain closure was proved by the MD simulations of the Asp372Ala variant. During the same simulation time, the variant remained more "open" than the wild type protein. Apparently, Ala was not as efficient as Asp in establishing the interdomain interactions. According to the MM-PBSA calculations, the electrostatic component of the free energy of solvation turned out to be higher for the "closed" protein than for its less compact form. However, the gain in entropy due to water released from the interdomain cleft nicely balanced this negative effect.


Assuntos
Dipeptidil Peptidases e Tripeptidil Peptidases/química , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica , Especificidade por Substrato
14.
J Mol Recognit ; 24(5): 804-14, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21812054

RESUMO

Human dipeptidyl peptidase III (DPP III) is a zinc-exopeptidase with implied roles in protein catabolism, pain modulation, and defense against oxidative stress. To understand the mode of ligand binding into its active site, we performed molecular modeling, site-directed mutagenesis, and biochemical analyses. Using the recently determined crystal structure of the human DPP III we built complexes between both, the wild-type (WT) protein and its mutant H568N with the preferred substrate Arg-Arg-2-naphthylamide (RRNA) and a competitive inhibitor Tyr-Phe-hydroxamate (Tyr-Phe-NHOH). The mutation of the conserved His568, structurally equivalent to catalytically important His231 in thermolysin, to Asn, resulted in a 1300-fold decrease of k(cat) for RRNA hydrolysis and in significantly lowered affinity for the inhibitor. Molecular dynamics simulations revealed the key protein-ligand interactions as well as the ligand-induced reorganization of the binding site and its partial closure. Simultaneously, the non-catalytic domain was observed to stretch and the opening at the wide side of the inter-domain cleft became enhanced. The driving force for these changes was the formation of the hydrogen bond between Asp372 and the bound ligand. The structural and dynamical differences, found for the ligand binding to the WT enzyme and the H568N mutant, and the calculated binding free energies, agree well with the measured affinities. On the basis of the obtained results we suggest a possible reaction mechanism. In addition, this work provides a foundation for further site-directed mutagenesis experiments, as well as for modeling the reaction itself.


Assuntos
Dipeptidil Peptidases e Tripeptidil Peptidases/química , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Domínio Catalítico/genética , Domínio Catalítico/fisiologia , Dipeptídeos/química , Dipeptídeos/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Humanos , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica/genética , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...